

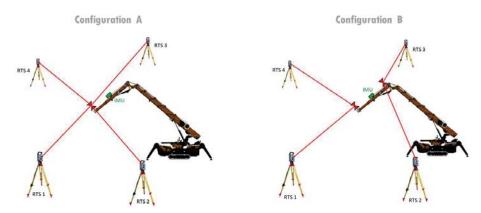
Robotic Platform for Cyber-Physical Assembly of Long-Span Fiber-Composite Structures - Geodetic Perspective

Overall Project Goals

- Development of cyber-physical on-site construction platform (CPC) for automation of material handling and on-site assembly
- Human-machine interaction by haptic feedback through haptic user interfaces
- Development of real-time robotic total station (RTS) network for seamless CPC positioning
- Project partners: Research project within the Cluster of Excellence IntCDC at the University Stuttgart: Institute of Engineering Geodesy (IIGS); Institute for System Dynamics (ISYS); Haptic Intelligence Department

(MPI HI), Max Planck Institute for Intelligent Systems

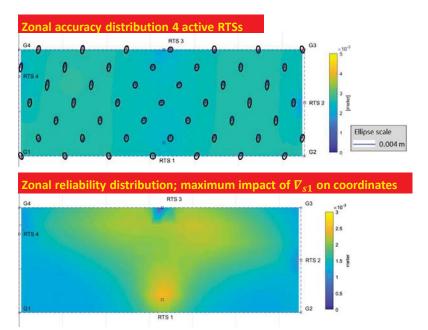
Geodetic contribution


- Absolute 6-DoF pose determination for the guidance process of the CPC with highest possible accuracy and reliability/ robustness
 - Development of RTS-network for pose determination
 - Optimization of geometric network configuration w.r.t. accuracy and reliability

Approach

Establishment of the geodetic reference frame (with

- Configuration for CPC pose determination
- · RTS network control



<u>Methodology</u>

- Data fusion and pose determination by Gauss-Markov-Model
- Definition and determination of quality parameters
 - Accuracy: standard deviations, error ellipses/hyperellipsoids
 - Reliability: minimal detectable error V_{l_i} , impacts of V_{l_i} on positions and orientations
- Analysis of geometric on-site arrangement of RTSs w.r.t. CPC platform using geodetic network analysis

Results

- Accuracy
 - for positions between 2.1 mm and 3.3 mm
 - for orientations between 0.05° and 0.1°
- Reliability
 - impact of minimal detectable error ∇_{li} on coordinates between 0.42 mm and 1.32 mm
 - impact of minimal detectable error ∇_{li} on orientations (yaw, pitch) between 0.001° and 0.054°
- Analysis of geometric on-site arrangement of RTSs w.r.t. CPC

Selected publications

Lerke, O., & Schwieger, V. (2021). Analysis of a kinematic real-time robotic total station network for robot control. Journal of Applied Geodesy, 15(3), 169--188. https://doi.org/doi:10.1515/jag-2021-0016

Lauer, A. P. R., Lerke, O., Gienger, A., Schwieger, V., & Sawodny, O. (2023). State Estimation with Static Displacement Compensation for Large-Scale Manipulators. Proceedings of the 2023 IEEE/SICE International Symposium on System Integrations (SII 2023).

Lauer, A. P. R., Lerke, O., Blagojevic, B., Schwieger, V., & Sawodny, O. (2023). Tool center point control of a large-scale manipulator using absolute position feedback. Control Engineering Practice, 131, 105388. https://doi.org/10.1016/j.conengprac.2022.105388

Funding

Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2120/1 - 390831618.

