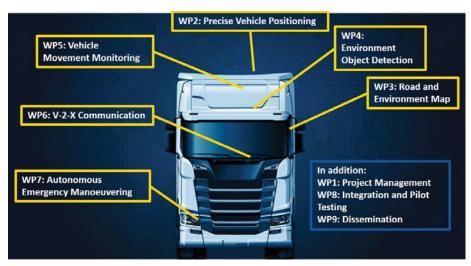


University of Stuttgart Institute of Engineering Geodesy

Geschwister-Scholl-Str. 24d, D-70174 Stuttgart


TransSec -Autonomous emergency maneuvering and movement monitoring for road transport security

Motivation and Goal

Development of a system to prevent terror attacks using trucks:

- Permanent monitoring of the vehicle
- Automatic start of emergency routines for reducing the danger in case of critical driving maneuvers
- Project Partners: Institute of Engineering Geodesy (IIGS), University of Stuttgart, Germany; Daimler AG, Germany; TeleConsult Austria GmbH, Austria; Vicomtech, Spain; Waterford Institute of Technology, Ireland

Overview of Work Packages

- Development of a robust and reliable positioning system by using the Galileo navigation satellite system and multi-sensor systems
- Detection of forbidden driving maneuvers by localization of the truck positions on the digital road map via map-aiding approach
- Detection of dynamic objects around the truck by cameras and Lidar sensors and development of a local dynamic map

Main Tasks of IIGS:

- Multi-sensor integration for reliable and precise vehicle positioning
- Analysis of the quality of maps in NDS format (Navigation Data Standard)
- Map-aiding algorithm

Results

 Multi-sensor integration by development of a strapdown algorithm and an error-state Kalman Filter using low cost GNSS receiver systems (ublox C099-F9P application board) and Xsens IMU (MTi-100)

Accuracy	Test Area 1	Test Area 2	Test Area 3	Test Area 4	Test Area 5
rms _{ds} (abs.)	1.45 m	1.47 m	1.54 m	1.57 m	1.53 m
$rms_{\scriptscriptstyle \Delta\Deltalpha}$ (rel.)	2.7°	2.6°	2.6°	2.2°	2.6°
$rms_{\scriptscriptstyle \Delta\Deltalpha}{}^{*}$ (rel.)	0.62 m	0.59 m	0.59 m	0.49 m	0.58 m
$rms_{\Delta\kappa}$ (rel.)	7.9 ¹ / _{km}	$5.2 \frac{1}{\text{km}}$	$5.7 \frac{1}{\text{km}}$	$7.4 \frac{1}{\text{km}}$	$6.7 \frac{1}{\mathrm{km}}$
No. of GNSS points	1048	225	559	1963	545
Total length	19.6 km	2.6 km	10.7 km	34.5 km	12.1 km

Accuracy analysis of the NDS maps used

 Development of a lane-level map-aiding approach based on non-lane-level digital road map data: Results of real trajectories (55 km): false positive rate are 1.25 % for off-road and 0.35 % for wrongway driver detection

Selected Publications

Zhang, L., Wang, J., Wachsmuth, M., Gasparac, M., Trauter, R., & Schwieger, V. (2019). Role of Digital Maps in Road Transport Security. FIG Working Week 2019, Hanoi. FIG Working Week, Hanoi, Vietnam.

Zhang, L., Wang, J., Wachsmuth, M., Gasparac, M., & Schwieger, V. (2019). Die Rolle digitaler Karten für Sicherheitsfunktionen im Straßenverkehr. zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 4/2019,

- Risk analysis-based monitoring of vehicle movement and reduction of danger during critical driving maneuvers
- Warning to the surrounding area through a vehicle-to- everything communication (V2Xtechnology)

Article 4/2019.

Wachsmuth, M., Koppert, A., Zhang, L., & Schwieger, V. (2020). Development of an error-state Kalman Filter for Emergency Maneuvering of Trucks. European Navigation Conference (ENC); Dresden, Germany, 22.-25.11. https://doi.org/10.23919/ENC48637.2020.9317306

Luz, P., Zhang, L., Wang, J., & Schwieger, V. (2021). Lane-Level Map-Aiding Approach Based on Non-Lane-Level Digital Map Data in Road Transport Security. Sustainability, 13(17), 9724. https://doi.org/10.3390/su13179724

Funding

The investigations published in this article are granted by GSA (European GNSS Agency) within the H2020-GALILEO-GSA-2017 Innovation Action with Grant Agreement Nr.:776355. Therefore the authors cordially thank the funding agency.

