Dieses Bild zeigt Gabriel Kerekes

Gabriel Kerekes

Dr.-Ing.

Gruppenleitung 3D-Datenerfassung und Monitoring
Institut für Ingenieurgeodäsie Stuttgart
Fakultät 6: Luft- und Raumfahrttechnik und Geodäsie

Kontakt

Geschwister-Scholl-Str. 24D
70174 Stuttgart
Deutschland

Fachgebiet

  • Terrestrisches Laserscanning
  • Ingenieurvermessung
  • 3D-Datenerfassung und Monitoring 
 
  1. Kerekes, G., & Schwieger, V. (2025). Correlations in TLS point clouds: Should we care about them? Proceedings of 6th Joint International Symposium on Deformation Monitoring (JISDM), Karlsruhe, Germany, 7-9 April, 2025. https://jisdm2025.gik.kit.edu/downloads/JISDM2025_Kerekes_and_Schwieger.pdf
  2. Spyridonos, E., Costalonga, V., Petrš, J., Kerekes, G., Schwieger, V., & Dahy, H. (2025). Enhancing construction accuracy with biocomposites through 3D scanning methodology: Case studies applying Pultrusion, 3D Printing, and Tailored Fibre Placement. Case Studies in Construction Materials, 22, e04499. https://doi.org/10.1016/j.cscm.2025.e04499
  3. Kerekes, G., & Schwieger, V. (2024). An approach for considering the object surface properties in a TLS stochastic model. Journal of Applied Geodesy, 18, 115–131. https://doi.org/doi:10.1515/jag-2022-0032
  4. Kerekes, G., & Schwieger, V. (2024). Possibilities and Limitations in the extrinsic Synchronization of Observations from Networks of Robotic Total Stations. FIG Working Week Accra 2024.
  5. Kerekes, G. (2023). An elementary error model for terrestrial laser scanning [Dissertation, Universität Stuttgart]. In Deutsche Geodätische Kommission: Reihe C, Heft Nr. 900, Verlag der Bayerischen Akademie der Wissenschaften. https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-900.pdf
  6. Hassan, A., Zhang, L., Kerekes, G., & Schwieger, V. (2022). Geodetic Data Fusion for Rock Cliff Monitoring: a Case Study of the Lianzi Cliff in Three Gorges National Geological Park in China. XXVII FIG Congress 2022, Warsaw, Poland. https://fig.net/resources/proceedings/fig_proceedings/fig2022/papers/ts04d/TS04D_hassan_zhang_et_al_11340.pdf
  7. Kerekes, G., Jakob, R., Harmening, C., Neuner, H., & Schwieger, V. (2022). Two-epoch TLS deformation analysis of a double curved wooden structure using approximating B-spline surfaces and fully-populated synthetic covariance matrices. 5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 April 2022, Valencia, Spain. http://ocs.editorial.upv.es/index.php/JISDM/JISDM2022/paper/viewFile/13816/7605
  8. Kerekes, G., Petrš, J., Schwieger, V., & Dahy, H. (2022). Geometric quality control for bio-based building elements: Study case segmented experimental shell. Journal of Applied Geodesy. https://doi.org/doi:10.1515/jag-2020-0035
  9. Kerekes, G., & Schwieger, V. (2021). Towards Perceived Space Representation using Brain Activity, Eye-Tracking and Terrestrial Laser Scanning. In A. Basiri, G. Gartner, & H. Huang (Eds.), Contributions to International Conferences on Engineering Surveying (pp. 57–68). https://doi.org/doi.org/10.34726/1788
  10. Kerekes, G., & Schwieger, V. (2021). Determining Variance-Covariance Matrices for Terrestrial Laser Scans: A Case Study of the Arch Dam Kops. In A. Kopácik, P. Kyrinovic, J. Erdélyi, R. Paar, & A. Marendić (Eds.), Contributions to International Conferences on Engineering Surveying (pp. 57–68). Springer, Cham. https://doi.org/10.1007/978-3-030-51953-7_5
  11. Raschhofer, J., Kerekes, G., Harmening, C., Neuner, H., & Schwieger, V. (2021). Estimating Control Points for B-Spline Surfaces Using Fully Populated Synthetic Variance–Covariance Matrices for TLS Point Clouds. Remote Sensing, 13, Article 16. https://doi.org/10.3390/rs13163124
  12. Kerekes, G., & Schwieger, V. (2020). Elementary Error Model Applied to Terrestrial Laser Scanning Measurements: Study Case Arch Dam Kops. Mathematics 2020, Vol. 8(4) 593. https://doi.org/10.3390/math8040593
  13. Schwieger, V., Kerekes, G., & Lerke, O. (2020). Image-Based Target Detection and Tracking Using Image-Assisted Robotic Total Stations. In O. Sergiyenko, W. Flores-Fuentes, & P. Mercorelli (Eds.), Machine Vision and Navigation. Springer, Cham. https://link.springer.com/chapter/10.1007%2F978-3-030-22587-2_5
  14. Schwieger, V., Lerke, O., & Kerekes, G. (2019). Image-Based Target Detection and Tracking Using Image-Assisted Robotic Total Stations. FIG Working Week 2019, Hanoi, Vietnam, 22.-26.04.
  15. Kerekes, G., & Schwieger, V. (2018). Position Determination of a Moving Reflector in Real Time by Robotic Total Station Angle Measurements. RevCAD Journal of Geodesy and Cadastre, No 9 / 2018. https://jgcc.geoprevi.ro/docs/2018/9/jgcc_2018_no9_2.pdf
  16. Kerekes, G., & Schwieger, V. (2018). Kinematic Positioning in a Real Time Robotic Total Station Network System. 6th International Conference on Machine Control and Guidance. Berlin, Germany, Bornimer Agrartechnische Berichte Heft 101, 35–43.
  17. Kerekes, G. (2013). Open Source 3D Modeling from Raster Images. Young Researchers Conference at the Technical University of Civil Engineering, Bucharest, Romania, In: Mathematical Modelling in Civil Engineering, Special Issue, 84–89. https://mcee.utcb.ro/images/doc/2013/Scientific_Journal_-_Special_issue_-_november_2013.pdf
  18. Kerekes, G. (2013). Open Source GIS Cartography for Small Scale Maps. - 8th National Student Symposium ‘’IF-IM-CAD’’. Journal of Young Scientist, Vol.I, Bucharest, Romania, 221–226. http://journalofyoungscientist.usamv.ro/index.php/scientific-papers/past-issues?id=370
  19. Kerekes, G. (2012). Geospatial analysis of a database for the first order geodetic network of Romania. Proceedings of “In Extenso” Scientific Student’s Communication Session, Alba Iulia, Romania.
Übungen 
 
 
Ingenieurgeodäsie I und II
(Geodäsie und Geoinformatik, Bachelor 6. Semester)
Terrestrische Multisensorsysteme (Geodäsie und Geoinformatik, Master,  3. Semester)
Industrielle Messtechnik (Master Geodäsie und Geoinformatik, 1. Semester)
Integriertes Praktikum 
(Geodäsie und Geoinformatik, 6. Semester; GEOENGINE, 2. Semester)

 

2024 - BA
Großkopf, Julia
Qualitätsbeurteilung der thermographischen Informationen von Punktwolken des Leica BLK360 Laserscanners. (Kerekes/Schwieger)

2024 - BA
Pappas, Stylianos
Untersuchung der Intensitätswerte von TLS-Punktwolken mittels diffus reflektierender Oberflächen. (Kerekes/Schwieger)

2022 - MA
Dalloul, Ahmed
3D model generation through autonomous scanning for infrastructure facilities. (Kerekes/Schwieger)

2021 - BA
Wilczynski, Martin Jan
Verwendbarkeit von mobilen Eye-Tracking Systemen in der geodätischen Messtechnik. (Kerekes/Schwieger)

2020 - MA
Sabzali, Mansoor
Improving the modelling of atmospheric effects on long-range TLS measurements. (Kerekes/Schwieger)

2019 - BA
Hausmann, Nadine
Untersuchung eines TLS auf Nahbereichskorrektur sowie Einsatzmöglichkeiten bei unterschiedlichen Wetterbedingungen. (Kerekes/Metzner) 

2019 - BA
Pfitzenmaier, Tobias
Strahldivergenz und Footprint Untersuchung von puls-basierte Laserscannerstrahlen mittels experimentellen Messungen unter Labor- und Feldbedingungen. (Kerekes/Schwieger)

2018 - MA
Dominguez Moran, Luis Eduardo
Reliability and accuracy evaluation of the Direct Reflex Plus – non-reflector measurement mode of the imaging/scanning Total Station Trimble S7 through scenario tests. (Kerekes/Metzner) 

2018 - MA
Parra Mendoza, Kevin Eduardo
Displacement and deformation detection of a model structure simulated by a mechanical actuator using the Leica HDS7000 laser scanner. (Kerekes/Schwieger)

2018 - MA
Basalla, Urs
Zielverfolgung mittels von Leica TS16 erfassten Objektbildern. (Kerekes/Schwieger)

 

Zum Seitenanfang