Dieses Bild zeigt Gabriel Kerekes

Gabriel Kerekes

M.Sc.

Wissenschaftlicher Mitarbeiter
Institut für Ingenieurgeodäsie Stuttgart
Fakultät 6: Luft- und Raumfahrttechnik und Geodäsie

Kontakt

Geschwister-Scholl-Str. 24D
70174 Stuttgart
Deutschland

Fachgebiet

  • Terrestrisches Laserscanning
  • Ingenieurvermessung
 
  1. Hassan, A., Zhang, L., Kerekes, G., & Schwieger, V. (2022). Geodetic Data Fusion for Rock Cliff Monitoring: a Case Study of the Lianzi Cliff in Three Gorges National Geological Park in China. XXVII FIG Congress 2022, Warsaw, Poland. https://fig.net/resources/proceedings/fig_proceedings/fig2022/papers/ts04d/TS04D_hassan_zhang_et_al_11340.pdf
  2. Kerekes, G., Petrš, J., Schwieger, V., & Dahy, H. (2022). Geometric quality control for bio-based building elements: Study case segmented experimental shell. Journal of Applied Geodesy. https://doi.org/doi:10.1515/jag-2020-0035
  3. Kerekes, G., & Schwieger, V. (2021). Determining Variance-Covariance Matrices for Terrestrial Laser Scans: A Case Study of the Arch Dam Kops. In A. Kopácik, P. Kyrinovic, J. Erdélyi, R. Paar, & A. Marendić (Hrsg.), Contributions to International Conferences on Engineering Surveying (S. 57--68). Springer, Cham. https://doi.org/10.1007/978-3-030-51953-7_5
  4. Kerekes, G., & Schwieger, V. (2021). Towards Perceived Space Representation using Brain Activity, Eye-Tracking and Terrestrial Laser Scanning. In A. Basiri, G. Gartner, & H. Huang (Hrsg.), Contributions to International Conferences on Engineering Surveying (S. 57–68). https://doi.org/doi.org/10.34726/1788
  5. Raschhofer, J., Kerekes, G., Harmening, C., Neuner, H., & Schwieger, V. (2021). Estimating Control Points for B-Spline Surfaces Using Fully Populated Synthetic Variance–Covariance Matrices for TLS Point Clouds. Remote Sensing, 13(16), 3124. https://doi.org/10.3390/rs13163124
  6. Kerekes, G., & Schwieger, V. (2020). Elementary Error Model Applied to Terrestrial Laser Scanning Measurements: Study Case Arch Dam Kops. Mathematics 2020, Vol. 8(4) 593. https://doi.org/10.3390/math8040593
  7. Schwieger, V., Kerekes, G., & Lerke, O. (2020). Image-Based Target Detection and Tracking Using Image-Assisted Robotic Total Stations. In O. Sergiyenko, W. Flores-Fuentes, & P. Mercorelli (Hrsg.), Machine Vision and Navigation. Springer, Cham. https://link.springer.com/chapter/10.1007%2F978-3-030-22587-2_5
  8. Schwieger, V., Lerke, O., & Kerekes, G. (2019). Image-Based Target Detection and Tracking Using Image-Assisted Robotic Total Stations. FIG Working Week 2019, Hanoi, Vietnam, 22.-26.04.
  9. Kerekes, G., & Schwieger, V. (2018). Position Determination of a Moving Reflector in Real Time by Robotic Total Station Angle Measurements. RevCAD Journal of Geodesy and Cadastre, No 9 / 2018. https://jgcc.geoprevi.ro/docs/2018/9/jgcc_2018_no9_2.pdf
  10. Kerekes, G., & Schwieger, V. (2018). Kinematic Positioning in a Real Time Robotic Total Station Network System. 6th International Conference on Machine Control and Guidance. Berlin, Germany, Bornimer Agrartechnische Berichte Heft 101, 35–43.
  11. Kerekes, G. (2014). Evaluation of the Control Quality for a Construction Machine Simulator using the Laser Tracker API Radian. In (Master Thesis), Institute of Engineering Geodesy, University of Stuttgart, Stuttgart, Germany.
  12. Kerekes, G. (2013). Open Source 3D Modeling from Raster Images. Young Researchers Conference at the Technical University of Civil Engineering, Bucharest, Romania, In: Mathematical Modelling in Civil Engineering, Special Issue, 84–89. https://mcee.utcb.ro/images/doc/2013/Scientific_Journal_-_Special_issue_-_november_2013.pdf
  13. Kerekes, G. (2013). Open Source GIS Cartography for Small Scale Maps. - 8th National Student Symposium ‘’IF-IM-CAD’’. Journal of Young Scientist, Vol.I, Bucharest, Romania, 221–226. http://journalofyoungscientist.usamv.ro/index.php/scientific-papers/past-issues?id=370
  14. Kerekes, G. (2012). Geospatial analysis of a database for the first order geodetic network of Romania. Proceedings of “In Extenso” Scientific Student’s Communication Session, Alba Iulia, Romania.
Übungen 
 
 
Ingenieurgeodäsie I und II
(Geodäsie und Geoinformatik, Bachelor 6. Semester)
Terrestrische Multisensorsysteme (Geodäsie und Geoinformatik, Master,  3. Semester)
Industrielle Messtechnik (Master Geodäsie und Geoinformatik, 1. Semester)
Integriertes Praktikum 
(Geodäsie und Geoinformatik, 6. Semester; GEOENGINE, 2. Semester)

 

Zum Seitenanfang